
Conformal invariance and line defects in the two-dimensional Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L231

(http://iopscience.iop.org/0305-4470/21/4/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) L231-L236. Printed in the UK 

LETTER TO THE EDITOR 

Conformal invariance and line defects in the two-dimensional 
Ising model 

Malte Henkelt and Andrhs Patk6s*§ 
t Fachbereich Physik, Universitat Essen, Postfach 103 764, D-4300 Essen 1, Federal 
Republic of Germany 
$The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 
Copenhagen 0, Denmark 

Received 16 September 1987, in final form 27 November 1987 

Abstract. The quantum Ising chain with p equidistant defects is studied. The exact form 
of the Hamiltonian is found for an infinite number of sites. Using conformal invariance, 
generalised comer exponents are computed and found to depend continuously on the 
defect strengths. Realisations of extended conformal algebras in the Hamiltonian spectrum 
are obtained. 

There is increasing interest in the conformal characterisation of two-dimensional 
statistical systems with moving critical exponents. By investigating the degeneracy 
pattern of the spectrum of the quantum Hamiltonian, one can establish the appearance 
of higher dynamical symmetries. This approach has been applied to the Ashkin-Teller 
quantum chain (von Gehlen and Rittenberg 1986, Baake et a1 1987a, b) and a D6- 
symmetric quantum chain (Schutz 1987). At specific couplings the presence of N = 1, 
2 superconformal invariance and/or Kac-Moody algebras was conjectured. Similar 
structures occur for operator product algebras with additional higher spin conserved 
currents (Zamolodchikov 1985, Knizhnik 1986) or for parafermionic algebras 
(Zamolodchikov and Fateev 1986, Gepner and Qiu 1987). 

It is also possible to study models with infinite defect lines. For the Ising model 
with defect lines, the critical exponents are known (Bariev 1979, McCoy and Perk 
1980) to depend continuously on the defect strengths. The critical exponents obtained 
are generalisations of the standard surface exponents, rather than bulk exponents. In 
the case of the Ising model with one or two defect lines, one finds a U( 1) Kac-Moody 
algebra as the spectrum-generating algebra, which can be explicitly constructed in 
terms of fermionic oscillators (Henkel and Patk6s 1987a, b). 

Here, we are going to study the spectrum of the quantum Ising chain with three 
defects at the bulk critical point. The Hamiltonian is 

N 3 

f l= l  i = l  

H z - 1 1  2 a z ( n ) + a X ( n ) u X ( n + l ) + ;  1 ( 1 - K i ) u X ( ~ ( 2 i - 1 ) N ) a X ( & 2 i - 1 ) N + 1 )  

(1) 

where crx and a' are Pauli matrices, N is the number of sites of the quantum chain 
and the defect strengths K~ ( i  = 1,2,3) are free parameters. 
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We shall proceed in three steps. First, using numerical finite-size data, we obtain 
a conjecture for the exact form of H in the limit N + a. We find that H can be written 
in terms of three free (Dirac) fermions. Second, in the case of p defects, a relationship 
between the finite-size scaling amplitude of the correlation length and the critical 
exponent, which in this case is a generalised corner exponent, is obtained. We also 
find the N + 03 limit of H and the central charge of the Virasoro algebra for p defects 
in the Ising model. Finally, using the N + CO result for H, we consider the construction 
of extended conformal algebras. 

We now present the numerical part of our investigation. The diagonalisation of H 
is done in two steps, following a technique of Lieb er al (1961). H is written in a 
fermionic form: 

N N - l  

H = C ( C ' ( n ) C ( n )  -4) - f  C ( C ' ( n ) - C ( n ) ) ( C ' ( n +  1)- C ( n  + 1)) 
n = l  n = l  

+ 2 l -  Q ) ( C + ( N )  - C(N))(C+(l)-  C(1)) 

+$ 2 ( l - ~ , ) [ ~ + ( a ( 2 i - l ) ~ ) - C ( ~ ( 2 i - l ) N ) ]  

x [ ~ ' ( a ( 2 i - l ) ~ + l ) - C ( ~ ( 2 i - 1 ) N + l ) ]  

3 

, = I  

where the C ( n )  are fermionic operators and Q is the eigenvalue of the operator 

The spectrum of H is decomposed into the two sectors Q = O( l ) ,  which correspond 
to an even (odd) number of fermionic states. 

The diagonalisation of the quadratic form in ( 2 )  is done numerically (see also 
Guimarles and Drugowich de Felicio 1986). The one-fermion energies were computed 
for a sequence of finite lattices up to N = 200 sites and the extrapolation towards 
N+CO is done with an algorithm due to Bulirsch and Stoer (1964). A comparison 
with other frequently used algorithms shows that the Bulirsch-Stoer method yields in 
general more stable and more reliable results (Henkel and Schutz 1988). The N+CO 
limit of the lowest 20 one-fermion energies can be obtained to at least five digit accuracy. 
If the energy is measured in units of 6 r / N  (this choice of scale will be explained 
below) we observe the following. 

(i) All the higher one-fermion energies can be written as the sum of the energy of 
one of the lowest six levels and a positive integer. 

(ii) The energies of the first and the sixth levels add up to 1 (and also the second 
and the fifth and the third and the fourth). 

We obtain the following form for H ( a  and b are fermionic operators): 

where A, = A ! ( K , ,  K ~ ,  K ~ ; Q )  does depend on all three defect strengths and also on the 
sector Q. In table 1, some numerical values are given. From these numbers, we observe 

A,(Q = o)+ A,(Q = 1) = I  
A ~ ( Q = o ) + A ~ ( Q = I ) = ~  
A ~ (  Q = 0) + A,( Q = 1 = j 

( 5 )  
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Table 1. Values of A , ( K , ,  K ~ ,  K ~ ; Q )  for the quantum Ising chain with three equidistant 
defects. The expected accuracy is two units in the last given digit. 

0.0 0.0 0.5 

0.25 0.25 0.5 

0.3 0.3 0.3 

0.3 0.3 0.5 

0.5 0.5 0.5 

0.7 0.7 0.5 

0.7 0.7 0.7 

0.9 0.9 0.7 

0.176 208 
0.176 208 
0.146911 
0.178 481 
0.157 227 
0.205 623 
0.137 961 
0.179 436 
0.102 416 
0.184 505 
0.071 018 
0.159 434 
0.055 600 
0.172 163 
0.029 655 
0.154981 

0.25 
0.25 
0.277 024 
0.222 976 
0.294 377 
0.205 623 
0.285 019 
0.214981 
0.315 495 
0.184 505 
0.309 168 
0.190 832 
0.327 837 
0.172 163 
0.319 074 
0.180926 

0.323 792 
0.323 792 
0.321 519 
0.353 089 
0.294 377 
0.342 774 
0.320 564 
0.362 039 
0.315 495 
0.397 584 
0.340 567 
0.428 982 
0.327 837 
0.444 400 
0.345 019 
0.470 345 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

and if K~ = K~ = K~ = K 

A , ( Q = O )  = Ii--(l/r) tan-'(rc)l ( 6 )  

which is the same K dependence as found in the case of one defect (Henkel and Patk6s 
1987b). We did not suceed in finding analytic expressions for the other A , .  

We note that the convenient normalisation in (4) is 6 r / N  rather than the usual 
2 r / N .  This will be explained as follows, combining previous arguments of Turban 
(1985) and Cardy (1984). Consider a quantum chain with p equidistant defects. By 
the conformal mapping 

(7) 

the chain is mapped onto the infinite ZD plane with p half-infinite defect lines emanating 
from the origin. Now consider the transformation 

w = ( N / 2 r )  In U 

(8) 

If we take 8 = r p ,  the ZD plane is mapped onto a Riemannian surface with p sheets, 
each sheet containing a half-infinite defect line. Combining the conformal mappings 
( 7 )  and (8), each sheet is mapped onto one section of the strip between two defect 
lines, of width N l p .  For the correlation length we have, repeating the analysis of 
Turban (1985) and Cardy (1984), 

= U O ' T .  

(9) 

where the x, are generalised corner exponents. In the special case K~ = . . . = K~ = 0, we 
are back to the corner exponents already studied by Cardy (1984) and Barber er a1 
(1984). 

For the Ising model, each of the sheets gives rise to one Dirac fermion with a 
contribution of one to the central charge c of the Virasoro algebra. 
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However, if p is even, we can alternatively take 6' =;7rp in (8). Consequently, we 
now have i p  sheets with an infinite defect line per sheet. Equation (9) remains correct 
if p is replaced by i p  and for the central charge c we have in the case of the Ising model 

if p is odd 
if p is even. 

Our results (9) and (10) are confirmed by our numerical study for p = 3 discussed 
above and we also checked it for p = 4. We note that, for the Ising model, c gives the 
number of Dirac fermions appearing in the Hamiltonian. To conclude, we have 
obtained the exact N + CO form of the Ising Hamiltonian for p equidistant defects. 

Finally, we construct the spectrum in terms of the conformal algebra for the case 
p = 3. The generalisation to arbitrary p is obvious. 

The scaled energy gaps of the primary fields are in the two sectors Q = 0,1,  

N 3 

- AE = [ (Af(Q= 1) -A;(Q =O))Q/2+ tiAi(Q)+itT] ( 1 1 )  67r i = l  

where the ti are the eigenvalues of the charge operators 

The energies of the secondary fields are given by (11) plus a positive integer. By (9), 
we have thus written the complete list of the critical (corner) exponents. Since the 
Hamiltonian (4) can be decomposed into three mutually commuting parts, each of 
which is generated by a U( l )  Kac-Moody algebra (Henkel and Patk6s 1987b), the 
partition function Z = Z , Z , Z , ,  where each of the 2, is the partition function of a 
quantum Ising chain with one defect. Consequently, the degeneracies of all conformal 
towers follow the same pattern 1, 3, 5 ,  22, 51 , .  . . , which are the numbers of partition 
of the integers into 'tri-coloured' integers. If some of the A i  coincide, larger algebras 
than the U( 1 ) O  U( 1 ) O  ( 1 )  are realised in the model. 

We now write the generators of the conformal algebra explicitly. Consider the 
twisted fermionic fields 

where a-, = a,' and b-, = b,'. These fields satisfy the following boundary conditions 
on the torus: 

vjl(exp(2ri)) = exp(27riAj)vjl(l) 

vjdexp(2ri))  = exp(-27riAj)vj,(l). 

Now, recall that 2n (untwisted) Majorana fermions or n Dirac fermions form a 
realisation of the SO(2n) Kac-Moody algebra with central charge k = 1 (Witten 1984, 
Goddard and Olive 1986). In the same way, we define SO(6) (for p = 3)  Kac-Moody 
currents from the twisted fermions of (13) 

r, "'(z) = TJ- '  = : v , ~  ( Z ) ~ , ~ ( Z ) :  + ( A , / z ) & , E " ~  (15) 
n c Z  
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where 
of (12) is 

= 1 - and the dots denote normal ordering. The relationship to the ?, 

(16) 

Following the techniques of Sieberg and Schwimmer (1987) one can construct an 
automorphism onto the untwisted realisation of the SO(2n) Kac-Moody algebra. The 
Virasoro field is 

fi = Tii l 2  , , ,-Ai. 

3 

"€2 i = l  

and the Hamiltonian (4) is related to Lo via 

Lo = ( 6 ~ /  N ) (  H + g). (18) 

If we have, for example, K~ = K~ = K 3 ,  two of the A, coincide (see table 1)  and we have 
a realisation of the SU(Z)OU( l ) @ U (  1 )  Kac-Moody algebra. 

Following Schoutens (1987), one may even contemplate non-linear realisations of 
superconformal algebras in our model. With three Dirac fermions, we can write N = 4 
superconformal generators 

(19) 

( J ,  a = 1,2)  which indeed close, if the Kac-Moody generators T are taken from the 
SU(2)@SU(2)OU( 1 )  subalgebra of SO(6).  By the same automorphism already found 
for the SO(6) Kac-Moody algebra, our twisted realisation of the SO(4) 0 U( 1 )  extended 
N = 4 superconformal algebra can be mapped onto the untwisted form of Schoutens 
(1987). 

Let us summarise our results. For a quantum chain with p equidistant defects, we 
found a relation (equation (9)) between the energy differences of the Hamiltonian 
spectrum and generalised corner exponents. For the Ising model, the exact N + 00 

form of the Hamiltonian was obtained and the critical exponents were computed. This 
Hamiltonian carries realisations of non-Abelian (super-)conformal algebras, which are 
explicitly given in terms of twisted fermionic fields. 

The spectrum of quantum chains with non-equidistant defects is under investigation. 

GP(z) = 7,a(z)[(-1)OLT33 ' * ( z )  - i E , m T m m  "(z)I 
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